

95-865 Unstructured Data Analytics

Lecture 3: Wrap up basic text analysis, co-occurrence analysis

Slides by George H. Chen

Today

1. Revisit last lecture's demo (basic text analysis) but using arrays/vectors instead of dictionaries/Counter objects

When we get to neural nets: array/vector representations are much more commonly used in practice than dictionaries/Counter objects

2. Talk about co-occurrence analysis

Array/Vector Representations

 To familiarize yourself with arrays/vectors, we'll extensively be using NumPy in this course

When we get to neural nets: we will use PyTorch, which is similar to coding using NumPy (but more complicated than NumPy!)

- We will not assume or expect you to know Pandas in this class
 - Making sure that you're fluent in NumPy is going to be much more beneficial for learning PyTorch than knowing Pandas
 - Whenever Pandas shows up in 95-865, it will be self-contained (so that you do not actually need to know Pandas)
 - Yes, you can use Pandas in your homework if you want but we heavily encourage you to become fluent in NumPy if you aren't already to help prep for learning PyTorch

Technical detail: Pandas is great for working with 1D and 2D arrays but we'll regularly be working with 3D, 4D, 5D, etc arrays in PyTorch, which Pandas isn't great at

(Flashback) Recap: Basic Text Analysis

We represent each document as a histogram/probability distribution

We refer to a vector representation of the document as a feature vector

dimensions = number of terms

If there are lots of terms ⇒ feature vectors are high-dimensional

Another Viewpoint

We represent each document as a histogram/probability distribution

Vector Version of Previous Code Demo

 We first build the vocabulary of the Wikipedia article (by finding all unique tokens present in the article)

```
Index: 0 1 2 3 1 4 5 6 7

The opioid epidemic or opioid crisis is the rapid

8 9 6 10 11 12 13 14 15

increase in the use of prescription and non;

12 1 16 9 6 17 18

prescription opioid drugs in the United States ...
```

- We can then represent every word as a one-hot encoded vector
- We sum the one-hot encoded vectors to get a raw counts vector

Vector Version of Previous Code Demo

Demo

Multiple Documents

Choose a common vocabulary to use across all documents

Multiple Documents

Demo

Represent each sentence as its own feature vector for the Wikipedia article

Finding Possibly Related Entities with Co-occurrence Analysis

How to automatically figure out that "Lisa Su" and "AMD" are related?

BUSINESS • THE LEADERSHIP BRIEF

Lisa Su on AMD's Strategy for Growth and the Future of AI

11 MINUTE READ

https://time.com/7026241/lisa-su-amd-ceo-interview/

Suppose that we have a dataset of 4 text docs (each is a news article)

Suppose that we have a dataset of 4 text docs (each is a news article)

This is not a co-occurrence probability; it is a marginal probability

Notation

```
P({\rm Lisa~Su,AMD}) = \Pr({\rm randomly~chosen~doc~mentions~both~"Lisa~Su"~\&~"AMD"})
```

$$P(A,B) = {P(\text{ randomly chosen doc mentions} \atop \text{both } A \& B)}$$

P(Lisa Su) = P(randomly chosen doc mentions "Lisa Su")

P(A) = P(randomly chosen doc mentions A)

Running Toy Example

Suppose that we keep track of 3 named entities that are people: Lisa Su, Mark Zuckerberg, Sundar Pichai

Suppose that we keep track of 3 named entities that are companies: Alphabet, AMD, Meta

Exhaustive list of every person/company pair:

Lisa Su, Alphabet
Lisa Su, AMD
Lisa Su, Meta
Mark Zuckerberg, Alphabet
Mark Zuckerberg, AMD
Mark Zuckerberg, Meta
Sundar Pichai, Alphabet
Sundar Pichai, AMD
Sundar Pichai, Meta

Goal: rank these pairs

from "most interesting"

to "least interesting"

In practice: often want to focus on most interesting pairs

Need a numerical score for "interesting"-ness

A Simple First Thing to Try

Just use co-occurrence probabilities!

Lisa Su, Alphabet
Lisa Su, AMD
Lisa Su, Meta
Mark Zuckerberg, Alphabet
Mark Zuckerberg, AMD
Mark Zuckerberg, Meta
Sundar Pichai, Alphabet
Sundar Pichai, AMD
Sundar Pichai, Meta

Compute co-occurrence probabilities (one probability per pair) & sort from largest to smallest

What could go wrong?!?

Co-occurrence Analysis

Demo

A Simple Fix: Re-weight Co-occurrence Probability

 $\frac{P(\text{Mark Zuckerberg}, \text{Meta})}{P(\text{Mark Zuckerberg})P(\text{Meta})}$

Denominator larger ⇒ overall ratio smaller

Idea: instead of using co-occurrence probability, use the above ratio

A Simple Fix: Re-weight Co-occurrence Probability

Probability of A (person) and B (company) co-occurring

```
P(A,B); \qquad \text{if equal to 1} \\ P(A)P(B); \qquad \Rightarrow A, B \text{ are independent}
```

Probability of A and B co-occurring if they were independent

Denominator larger ⇒ overall ratio smaller

Idea: instead of using co-occurrence probability, use the above ratio

A Simple Fix: Re-weight Co-occurrence Probability

Probability of A (person) and B (company) co-occurring

$$P(A,B); \qquad \text{if equal to 1} \\ P(A)P(B); \qquad \Rightarrow A, B \text{ are independent}$$

Probability of A and B co-occurring if they were independent

Denominator larger ⇒ overall ratio smaller

Idea: instead of using co-occurrence probability, use the above ratio

Ranking of person/company pairs using the above ratio remains the same if we instead use the *log* of the above ratio

$$PMI(A, B) = \log \frac{P(A, B)}{P(A)P(B)}$$

This log ratio is called pointwise mutual information (PMI)

Reminder: this is what log looks like!

log(x)

Pointwise Mutual Information (PMI)

$$\log_2 \frac{P(A,B)}{P(A)P(B)} = \left(\frac{1}{\log 2}\right) \log \frac{P(A,B)}{P(A)P(B)}$$

$$\log_{10} \frac{P(A,B)}{P(A)P(B)} = \left(\frac{1}{\log 10}\right) \log \frac{P(A,B)}{P(A)P(B)}$$

If we use the same base to do all calculations, which base we use does not affect the ranking of person-company pairs!

Pointwise Mutual Information (PMI)

$$PMI(A, B) = \log \frac{P(A, B)}{P(A)P(B)}$$

- If equal to 0 $\Rightarrow A \& B$ are independent
- More positive value $\Rightarrow A \& B$ co-occur much more likely than if they were independent
 - More negative value $\Rightarrow A \& B$ co-occur much less likely than if they were independent
- In practice: need to be careful with named entities that extremely rarely occur
- Sometimes people consider only pairs with positive PMI values to be interesting (called positive PMI or PPMI)

Co-occurrence Analysis

Back to the demo